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An Information Revolution?

• We are in an era of abundant data:

– Society: the web, social networks, mobile networks,

government, digital archives

– Science: large-scale scientific experiments, biomedical

data, climate data, scientific literature

– Business: e-commerce, electronic trading, advertising,

personalisation

• We need tools for modelling, searching, visualising, and

understanding large data sets.



Modelling Tools

Our modelling tools should:

• Faithfully represent uncertainty in our model structure

and parameters and noise in our data

• Be automated and adaptive

• Exhibit robustness

• Scale well to large data sets



Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.



Bayes Rule

P (hypothesis|data) =
P (data|hypothesis)P (hypothesis)

P (data)
Rev’d Thomas Bayes (1702–1761)

• Bayes rule tells us how to do inference about hypotheses from data.

• Learning and prediction can be seen as forms of inference.



Machine Learning

• Machine learning is an interdisciplinary field studying both the mathematical
foundations and practical applications of systems that learn, reason and act.

• Other related terms: Pattern Recognition, Neural Networks, Data Mining,
Statistical Modelling ...

• Using ideas from: Statistics, Computer Science, Engineering, Applied
Mathematics, Cognitive Science, Psychology, Computational Neuroscience,
Economics



Linear Classification

Data: D = {(x(n), y(n))} for n = 1, . . . , N
data points

x(n) ∈ <D

y(n) ∈ {+1,−1}
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Model:

P (y(n) = +1|θ,x(n)) =

 1 if
D∑

d=1

θd x
(n)
d + θ0 ≥ 0

0 otherwise

Parameters: θ ∈ <D+1

Goal: To infer θ from the data and to predict future labels P (y|D,x)



Polynomial Regression

Data: D = {(x(n), y(n))} for n = 1, . . . , N

x(n) ∈ <
y(n) ∈ <
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Model:
y(n) = a0 + a1x

(n) + a2x
(n)2 . . . + amx(n)m + ε

where
ε ∼ N (0, σ2)

Parameters: θ = (a0, . . . , am, σ)

Goal: To infer θ from the data and to predict future outputs P (y|D, x,m)



Clustering with Gaussian Mixtures
(Density Estimation)

Data: D = {x(n)} for n = 1, . . . , N

x(n) ∈ <D

Model:
x(n) ∼

m∑
i=1

πi pi(x(n))

where
pi(x(n)) = N (µ(i),Σ(i))

Parameters: θ =
(
(µ(1),Σ(1)) . . . , (µ(m),Σ(m)),π

)
Goal: To infer θ from the data and predict the density p(x|D,m) or the probability
that two points belong to the same cluster.



Bayesian Machine Learning

P (θ|D) =
P (D|θ)P (θ)

P (D)

P (D|θ) likelihood of θ
P (θ) prior probability of θ
P (θ|D) posterior of θ given D

Prediction:

P (x|D,m) =
∫

P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =
∫

P (D|θ, m)P (θ|m) dθ



Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretations of the Marginal Likelihood (“model evidence”):

• The probability that randomly selected parameters from the prior would generate D.

• Probability of the data under the model, averaging over all possible parameter values.

• log2

“
1

p(D|m)

”
is the number of bits of surprise at observing data D under model m.

Model classes that are too simple are unlikely
to generate the data set.

Model classes that are too complex can
generate many possible data sets, so again,
they are unlikely to generate that particular
data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D



Bayesian Model Comparison: Occam’s Razor at Work
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Model Evidence

For example, for quadratic polynomials (m = 2): y = a0 + a1x + a2x
2 + ε, where

ε ∼ N (0, σ2) and parameters θ = (a0 a1 a2 σ)

demo: polybayes



Myths and misconceptions about Bayesian methods

• Bayesian methods make assumptions where other methods don’t
All methods make assumptions! Otherwise it’s impossible to predict. Bayesian
methods are transparent in their assumptions whereas other methods are often
opaque.

• If you don’t have the right prior you won’t do well
Certainly a poor model will predict poorly but there is no such thing as
the right prior! Your model (both prior and likelihood) should capture a
reasonable range of possibilities. When in doubt you can choose vague priors
(cf nonparametrics).

• Maximum A Posteriori (MAP) is a Bayesian method
MAP is similar to regularization and offers no particular Bayesian advantages.
The key ingredient in Bayesian methods is to average over your uncertain
variables and parameters, rather than to optimize.



Myths and misconceptions about Bayesian methods

• Bayesian methods don’t have theoretical guarantees
One can often apply frequentist style generalization error bounds to Bayesian
methods (e.g. PAC-Bayes). Moreover, it is often possible to prove convergence,
consistency and rates for Bayesian methods.

• Bayesian methods are generative
You can use Bayesian approaches for both generative and discriminative
learning (e.g. Gaussian process classification).

• Bayesian methods don’t scale well
With the right inference methods (variational, MCMC) it is possible to scale
to very large datasets (e.g. excellent results for Bayesian Probabilistic Matrix
Factorization on the Netflix dataset using MCMC).



Model Comparison: two examples

e.g. selecting m, the number of Gaussians in

a mixture model
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e.g. selecting m the order of a polynomial in

a nonlinear regression model

P (m|D) =
P (D|m)P (m)

P (D)
, P (D|m) =

∫
P (D|θ, m)P (θ|m) dθ

A possible procedure:

1. place a prior on m, P (m)
2. given data, use Bayes rule to infer P (m|D) and to make predictions P (y|D)

What is the problem with this procedure?



Non-parametric Bayesian Models

• Real data are complicated and we don’t really believe a low-order polynomial or
mixture of Gaussians can adequately model it.

• Bayesian methods are most powerful when your model adequately captures
relevant aspects of your data.

• Inflexible models (e.g. mixture of 5 Gaussians, 4th order polynomial) yield
unreasonable inferences.

• Non-parametric models are a way of getting very flexible models.

• Many can be derived by starting with a finite parametric model and taking the
limit as number of parameters →∞

• The effective complexity of the model grows with more data.

• Nonparametric methods are often faster and conceptually easier to implement
since one doesn’t have to compare multiple nested models.



Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)
Let f = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function values
evaluated at n points xi ∈ X . Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution over that subset p(f) is multivariate Gaussian.



Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X , the marginal
distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, µ(x), and a
covariance function, or kernel, K(x, x′).

P (f(x), f(x′)) = N(µ,Σ)

where
µ =

[
µ(x)
µ(x′)

]
Σ =

[
K(x, x) K(x, x′)
K(x′, x) K(x′, x′)

]
and similarly for P (f(x1), . . . , f(xn)) where now µ is an n× 1 vector and Σ is an
n× n matrix.

Once the mean and kernel are defined, everything else about GPs follows from the
basic rules of probability applied to mutivariate Gaussians.



Prediction using GPs with different K(x, x′)

Samples from the prior for different covariance functions:
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Corresponding predictions, mean with two standard deviations:
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E.g.: K(xi, xj) = v0 exp
{
−

(
|xi − xj|

λ

)α}
+ v1 + v2 δij with params

(v0, v1, v2, λ, α)



Using Gaussian Processes for Classification

Binary classification problem: Given a data set D = {(xi, yi)}n
i=1, with binary class

labels yi ∈ {−1,+1}, infer class label probabilities at new points.
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There are many ways to relate function values fi = f(xi) to class probabilities:

p(yi|fi) =


1

1+exp(−yifi)
sigmoid (logistic)

Φ(yifi) cumulative normal (probit)
H(yifi) threshold

ε + (1− 2ε)H(yifi) robust threshold

Non-Gaussian likelihood, so we need to use approximate inference methods (Laplace, EP, MCMC).



Support Vector Machines and Gaussian Processes Classification

We can write the SVM loss as: min
f

1
2
f
>
K−1f + C

∑
i

(1− yifi)+

We can write the negative log of a GP likelihood as:
1
2
f
>
K−1f −

∑
i

ln p(yi|fi)+ c

Equivalent? No.

With Gaussian processes we:

• Handle uncertainty in unknown function f by averaging, not minimization.

• Compute p(y = +1|x) 6= p(y = +1|f̂ ,x).
• Can learn the kernel parameters automatically from data, no matter how

flexible we wish to make the kernel.

• Can learn the regularization parameter C without cross-validation.

• Can incorporate interpretable noise models and priors over functions, and can
sample from prior to get intuitions about the model assumptions.

• We can combine automatic feature selection with learning using ARD.



Clustering



Clustering

Basic idea: each data point belongs to a cluster

Many clustering methods exist:

• mixture models

• hierarchical clustering

• spectral clustering

Goal: to partition data into groups in an unsupervised manner



A binary matrix representation for clustering

• Rows are data points

• Columns are clusters

• Since each data point is assigned to one and only one cluster,
the rows sum to one.

• Finite mixture models: number of columns is finite

• Infinite mixture models (DPMs): number of columns is countably infinite



Infinite hidden Markov models (iHMMs)

Hidden Markov models (HMMs) are widely used sequence models for speech recognition,

bioinformatics, text modelling, video monitoring, etc. HMMs can be thought of as time-dependent

mixture models.

In an HMM with K states, the transition
matrix has K ×K elements. Let K →∞.
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• Introduced in (Beal, Ghahramani and Rasmussen, 2002).

• Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet

processes, and provided a more efficient Gibbs sampler.

• We have recently derived a much more efficient sampler based on Dynamic Programming (Van

Gael, Saatci, Teh, and Ghahramani, 2008).



Infinite HMM: Changepoint detection and video segmentation

Experiment:  Changepoint Detection
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A binary matrix representation for clustering

• Rows are data points

• Columns are clusters

• Since each data point is assigned to one and only one cluster...

• ...the rows sum to one.



More general priors on binary matrices

• Rows are data points

• Columns are latent features

• We can think of infinite binary matrices...
...where each data point can now have multiple features, so...
...the rows can sum to more than one.

Another way of thinking about this:

• there are multiple overlapping clusters

• each data point can belong to several clusters simultaneously.

(Griffiths and Ghahramani, 2005)



Why?

• Many statistical models can be thought of as modelling data in terms of hidden
or latent variables.

• Clustering algorithms (e.g. using mixture models) represent data in terms of
which cluster each data point belongs to.

• But clustering models are restrictive, they do not have distributed representations.

• Consider modelling people’s movie preferences (the “Netflix” problem). A movie
might be described using features such as “is science fiction”, “has Charlton
Heston”, “was made in the US”, “was made in 1970s”, “has apes in it”... these
features may be unobserved (latent).

• The number of potential latent features for describing a movie (or person, news
story, image, gene, speech waveform, etc) is unlimited.



From finite to infinite binary matrices

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so

as K grows larger the matrix gets sparser.

• So if Z is N × K, the expected number of
nonzero entries is Nα/(1 + α/K) < Nα.

• Even in the K → ∞ limit, the matrix is
expected to have a finite number of non-zero
entries.



Indian buffet process
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“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as her plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to their
popularity, serving himself with probability mk/n, and trying a Poisson(α/n)
number of new dishes.

• The customer-dish matrix is our feature matrix, Z.



Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N ×D matrix of observed data, and Z be the
N ×K matrix of binary latent features

P (X,Z|α) = P (X|Z)P (Z|α)

By combining the IBP with different likelihood functions we can get different kinds
of models:

• Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for choice behaviour (Görür & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2006)

• Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007)

• Models for overlapping clusters (w/ Heller, 2007)



Nonparametric Sparse Latent Factor Models and
Infinite Independent Components Analysis

Model: Y = G(Z⊗X) + E

x ⊗ z

G

y

...

where Y is the data matrix, G is the mixing matrix Z ∼ IBP(α, β) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.

(w/ David Knowles, 2007)



Binary Matrix Factorization

genes × patients
users × movies

(w/ Meeds, Roweis, Neal, 2006)



Modelling Graph Structure
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Single-Layer Belief Networks

“dishes”

“
c
u
s
to
m
e
rs
”

:Parameters

  ! and "

...

 =   customers observed units

 =   dishes hidden units

]   &   ' [Wood, Griffi ths Ghahramani, 06



Modelling Graph Structure
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Modelling Graph Structure
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Modelling Graph Structure
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Single-Layer Belief Networks

“dishes”

“
c
u
s
to
m
e
rs
”

:Parameters

  ! and "

...

 =   customers observed units

 =   dishes hidden units

]   &   ' [Wood, Griffi ths Ghahramani, 06



Modelling Graph Structure

Inferring stroke localization from patient symptoms:

(50 stroke patients, 56 symptoms/signs)
A Non-Parametric Bayesian Method for Inferring Hidden Causes

(w/ Frank Wood, Tom Griffiths, 2006)



Learning Structure of Deep Sparse Graphical Models
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Learning Structure of Deep Sparse Graphical Models
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Learning Structure of Deep Sparse Graphical Models
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Learning Structure of Deep Sparse Graphical Models
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Multi-Layer Belief Networks
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(w/ Ryan P. Adams, Hanna Wallach, 2010)



Learning Structure of Deep Sparse Graphical Models

Olivetti Faces: 350 + 50 images of 40 faces (64× 64)
Inferred: 3 hidden layers, 70 units per layer.

Reconstructions and Features:
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Olivetti: Reconstructions & Features



Learning Structure of Deep Sparse Graphical Models

Fantasies and Activations:
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Olivetti: Fantasies & Activations



Markov Indian Buffet Process
and Infinite Factorial Hidden Markov Models
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• Hidden Markov models (HMMs) represent the history of a time series using a
single discrete state variable

• Factorial HMMs (fHMM) are a kind of HMM with a factored state representation
(w/ Jordan, 1997)

• We can extend the Indian Buffet Process to time series and use it to define a
non-parametric version of the fHMM (w/ van Gael, Teh, 2008)



The Big Picture:
Relations between some models
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Summary

• Probabilistic modelling and Bayesian inference are two sides of the same coin

• Bayesian machine learning treats learning as a probabilistic inference problem

• Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

• This motivates non-parametric Bayesian methods, e.g.:

– Gaussian processes for regression
– Dirichlet process mixtures for clustering
– Infinite HMMs for time series modelling
– Indian buffet processes for sparse matrices and latent feature modelling

http://learning.eng.cam.ac.uk/zoubin
zoubin@eng.cam.ac.uk


